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a uniform presure po* acts on the external contour and a = i/s , these coefficients are 

KI + iRrl: = 6 po+ [G, (%, e) + iG2 (00, 811 
The values of G, (O,, E) and G, (Cl,, e) am presented in Table 1. 
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The equations of motion of mechanicaf systems with multipliers are reduced 
to the form enabI.ing the separation of these equations into two groups, the first 
group describing the motions of the system, and the second graup defining the 
multipliers. Each multiplier is determined independently of the remaining 
multipliers, and this makes it easy to assess the dynamic effect of each con- 
straint on the system, On the basis of this approach, we study the following 
problems: determination of the constraint reactions El], study of the motion 
of controlled systems with prescribed constraints [Z, 31 and utilization of the 
method of nonholonomic mechanical systems in the case when the first integ- 
rals exist 141. 

1, Equation8 of motton of a ryetern with multiplior~, Weconsider 
a system the position of which is defined in terms of the generalized coordinates qi (I = 
1, 2, . . .) n). We assume that the system is restricted by ideal, nonholonomic, second 
order nonlinear constraints of the form 

t,(t,q~,qi,q,“)=O, i=i, 2 ,..,, n; a=& 2 ,..., Q (1.1) 
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where 
D (fig fp . . ., f,) i D (q;+,, . . ., q,,“) # 0, p-11-s 

Equations of motion of the system can be written in the form [5] 

as 
y=Qj+ i A+, 
aq, 

i=l, 2, . . . . n 

a=1 i 

(1.2) 

(1.3) 

where h, are the undetermined multipliers characterizing the dynamic effect of the con- 
straints on the mechanical system. Since Eqs. (l. 3) appear unsuitable, as they are, for 
the direct determination of the multipliers h, , we transform them by introducing new 
variables Q~“, pa*‘, . . . . qP”, ul”, up”, . . . . ud” to replace ql”, qa”, . . . . q,,“. Here IL,“= 

r, 0, Qi, Qi’, C/i”)* 
Taking into account the condition (1.2), we have 

qh ” = qh” (tl ?i 9i’, Q,“, ll=“), h=p+ 1,. . ., n; Y= 

= 1, 2,. . .( p; a = 1, 2,. . ., s 

Thus we can express the new variables in terms of the old ones, and vice versa. We note 
that the equations of constraints (1.1) now become 

-* % = 0 , a=l,2 ,.,., s 

Using the new variables we can write the equations of motion of the system in the fol- 
lowing form [5] : 

&So 
-=Q,+ 
aq,” h=;; 

(1.4) 

(1.5) 

The first grump of Eqs. (1.4) describes the motion of the system, and the second group 
(1.5) makes it possible to determine the multipliers independently from each other. 

Notes. 1’. The above equations can obviously be applied to the systems with the 
usual first order nonholonomic constraints. 

2'. Since for the holonomic systems the constraint equations have the form 

F,(t, qj)=O, i=i,2 ,..., n; a=1, 2,.. ., s 

we introduce the following variables: ql, qz ,..., qp,ul, us, . . . . us with ua = F,k qd. 
Then Eqs. (1.4) and (1.5) will assume the form 

Example 1. Let us consider the motion of a motorcar in accordance with a sim- 
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plified scheme (see [6-j). Following [S], we write the expression for the energy of acce- 
leration in the form 

2‘S’.== M (x,“‘fy/)+4rp”‘+. . . 

where the terms which have not been written out contain no I C”, y,“or ‘p”. The gene- 
ralized forces referred to the generalized coordinates z,.+ yC and cp are Q = F cos 9, 
02 = F sin q and Qs = 0 [S]. 

Let us now introduce the variables y, u, arid u, 

. 

Ul 
=x; sin cp -~yc*cos qf b& us* = z,‘sin(cp+e)-y~‘oos(~+e)-acos8cp’ 

(I&l’ = 0 and %‘= 0 represent the equations of no~olonomic constraints f6]). Differ- 
entiating the above relations with respect to time and solving the resulting equations 
for x;* and y,“, we have 

&[Bsinrp+Asin(cp+6)]. A=bip”-~‘*+totgl3~’ 

B = us** f a cos t-l cp” - 
~cc#ef bsin*6 

sin 6 cp” - & (p0”, t!=a+b 

Using Eq. (Lb), we now obtain the equation of motion of the system 

J,cp” + & {2,"IbCOS(9,+8)fUGGSeGosq?l f 

y," [a GO9 6 sin cp f b sin (cp + 6) 1) = 0 

(1.9) 

To find the dynamic effects of the constraints we use (1.51 to obtain 

& [~c"GGS(cp+~)+~c"~in(cp+8)]=F~tg8-~II (1.10) 

M/sin6(x,“coscp+y,“singp)=F+~ 

In (1.10) we must replace 2;” and ye" by the cor~s~~ng expressions given in (1.8). 
After simple transformations we obtain the expressions for cp”, hi and & which agree 
with those obtained in [S]. 

2. On the motion of controlled mrrohrnlcrl ryotsmr with pr@- 
raribed constrainta. Let us allow w&ideal c~~~n~(2.1) and prescribed con- 
straints [Z, 3](2.2) be imposed on a controlled mechanical system 

j, (4 Pi, 4*‘1 qi;‘, Cj) = 6, i = i, 2,. . ., n; a = 1, 2, . . ., s; i = i, 2,. . ., k (2. 1) 

gs ($9 Qir !I,‘, 4*“* Ef) = 6, s = 1, 2, . l *, i- (2.2) 

where gj are the control parameters of the system. Let us also assume, that 
D or, fs, * * *t f,r g,, k&l * * ‘t g,) 

D (Qp+l’ 9;;+s* ’ * *I q,“) 
#O, P-n-(sfr) 

The prescribed carstraints can be regarded as constraints the reactions of which areequal 
to zero. 

Let us determine the reactions of the prescribed constraints and equate them to zero. 
We introduce the variables ql”, qs”, . . ., qp”, ul”, ug”, . . ., us**, %“, US**, - - ., VT*‘, 
and 



1084 Do Shari’’ 

Using Eqs. (1. l), we obtain the dynamic conditions 

(e) =h$lQ,,(~)o, p=i,z ,..., r (2.3) 
s 

The equations of motion of the reduced system now assume the form 

aso 
..O 

spy.. =Q,+~Q+, v=i,2,...,p (2.4) 
h-P+1 

and equations determining the reactions of the real constraints, become 

Thus the motion of a controlled system with prescribed constraints is completely des- 
cribed by Eqs. (2.3) and (2.4). Equations (2.4) represent the equations of motion of the 
system in question under the assumption that the prescribed constraints are regarded as 
real constraints, while Eqs. (2.3) describe the conditions which enable us to reduce the 
prescribed constraints to the real ones. Equations (2.5) give the reactions of the real 
constraints. Thus if the reduced system has p degrees of freedom, then the number of 
equations describing the motions of the system is p + r (where r is the number ofequa- 
tions of prescribed constraints). Equations (2. l), (2.3) and (2.4) together form a com- 
plete system of equations of the problem of motion of a controlled mechanical system 
with prescribed constraints. 

N o t e . If we impose on holonomic mechanical systems the prescribed holonomic 
constraints (2.6) and real holonomic constraints (2. ‘7) 

gp (t, qi, tj) = 0, i = I, 2, . . , n; p = 1,2, . , r; i = I,& . . . , k (2.6) 

f,(t74*,Ej)=0, az1,27'.~,s 
(2.7) 

replace the variables ql, qr, . . ., Q,, by the variables q17 q2, . . ., qp, 14, ~(1, . . . , u8, 

then the dynamic conditions will assume the form 

~(f)a-(f)‘=~~~Q~(~)o, 
p=1,2 ,..., r 

and the equations of motion of the system will become 

-7--=Q,“+ 2 Q,,+, d c3T” aT” 

dt aq, aq, 
v=i,z,...,p 

hap+1 ” 

while the equations describing the reactions of the real constraints will have the form 

&(~)"-($)o=~lQ~o(~)o, a=l,z,...,s 

Example 2. The Appell problem [Z, 33. A material plane P can slide translation- 
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ally on a stationary horizontal plane Oxy. A sphere of radius R can roll withart sliding 
on the plane P . The motion on the plane P is regulated automatically in such a way, 
that the center of the sphere rotates uniformly about the Or-axis with angular velocity 0. 

Let us write the equations of the problem. We denote by F, and ‘1 the coordinates of 
the center of the sphere, by p, q and r the componenb of the instantaneous angular ve- 
locity of the sphere, and by u, u the coordinates of some point on the plane. Then the 
energy of acceleration of the sphere is 

TheequatioIlJoftherealconstraintsare ~-QR-u~=O,~~‘+~R--~=O, andthe 
equations of the prescribed constraints are &’ + q = o, 11’ - UE = 0. Introducing the 
variables r, 4, t+, 4 and us in which 

u; = $ - qR - I(‘, us* = ,,’ + PR - vf, vl* = 5’ + q, v,’ 3 tl’ - a< 

we find 

E” = Vi” - ova’ -@Y, V =v1"+(0u1'-co~ 

and the energy of acceleration assumes the form 

2s = M [ (Ul” - ov%~ - coy)* + (m’. + CJm ’ - WY1 + 
a/s M [ (11” - Ul” - ova’ - OF - u “)a + (ua” - VI” - 04’ f dq + v”)* + EFr*j 

The generalized forces expressed in terms of the generalized coordinates, are equal to 
zero. In accordance with Eqs. (2.3), the dynamic conditions are 

7&k + 2u” = 0, 33Tl - 2v” = 0 

and (2.4) yields the equations of motion i = 0 of the reduced system, 
To find the reactions of the real constraints we use (2.5) and obtain ‘Ia MR9’ = 

- Al, Va MRp’ = h,. 

It can easily be shown that the dynamic conditions can be written in the form 

-5(J)‘t + 2Rq’ = 0, 2Rp’ - 50%) = 6 

Thus the system (2.6) is of the same order as the system (2.7) [3]. 

8, We consider the case when the integrals of dynamic equations represent the con- 
ditions of the nonholonomic constraints [3]. 

We assume that certain first integrals of motion of the system are known. The ques- 
tion arises whether these integrals can be regarded as the equations of nonholonomiccon- 
straints imposed on the system in question, and how to use them in constructing the equa- 
tions. Applying the results obtained in Sect, 2 we obtain the answer very simply, since 
the first integrals are particular cases of the prescribed constraints. In other words, the 
first integrals can be regarded as the equations of nonholonomtc constraints. 

Let the motion of the system be subject to the nonholonomic constraint (1.1) and have 
the first integrals 

gs (t, qi, q1’) = C@ = comt, f3 = 1,2, . . - , ?- 

The equations of motion of the system with constraints (1.1) will be 

(3.2) 
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where Qi* denote the generalized forces of reaction of the constraints. Obviously, Eqs. 
(3.2) also have first integrals (3.1). Let us now regard them as the new constraints and 
find the corresponding Lagrange multipliers. As before. we introduce the variables 

n &!a 
c 

% 
ap Qi' + at 

i=1 
i 

Utilizing (L 5) and noting that 

we find the multipliers ~scorresponding to the “new” constraints 
n 

Pp = CC as 
--QQ,-Q,*)' (s)’ aq;* 

i=l 

But along the trajectory of motion we have (3.2), therefore 

up = 0, fi = 1, 2, . . ., r 

Example 3. We consider the case of a holonomic scleronomous system with igno- 
rable coordinates q= (a = m + 1, . . ., n). The kinetic energy of such a system has the 
form n 

T=f c arr (41, Q% . . . 9 Q,) Q,‘Q,’ 
r, J-1 

In this case the cyclic integrals exist 

pa = aT 1 bq,’ = h, = const, a=m+i,...,n (3.3) 

We can now regard the cyclic integrals as the equations of the nonholonomic constraints, 
Let us introduce the variables ?I’, Qs’, . . . . , qm’, ++I’, v m+r’, . . ., v,‘, where vB’ = 
pg - hp, $ = m + 1, . . ., n. 

First, we shaII show that the dynamic conditions are satisfied identically. In the pre- 
sent case these conditions have the form 

(+)"=af,+lQa (s)* 
It can easily be proved that 

Moreover, we have Q, _ = o since qa are ignorable coordinates. Therefore the dynamic 
conditions are satisfied identically and the system is reducible. In accordance with [7], 
the constraint equations (3.3) yield 

m 7% 11 

qa- = c B,iq,’ + B,, B, = c baphp9 Bai = - c bc&i (3.4) 
i=1 P=*l 0-1 

a, #3 = m + 1, . . ., n, i = 1, . . ., m 

To construct the equations of motion of the reduced system, we shall use the Voronets 
equation [S] for the cyclic systems 



On the determfnatlon of forces of constraint reaction 1087 

d i3T’ aT” _____+_ 2 j)$?$-+aj)-- (3.5) 
dt aq; ai 

or+1 j=l 
* 

c h a4 

adn+l 
aq- 

Here [l] 
72 m 

T' = T* j-i C hap hahp, T* zzz f c fQ*q,-Qj’ 
(3.6) 

a, P=w-1 4, j=l 

T* is the kinetic energy of the reduced system, while the coefficients ati* and ba8 can 
be famd as shown in fl]. 

Let us now set L+ = T* - V, where V is the generalized potential defined by the 
ewation fl] n m 

v=rI*++ 
xc 

*ajhaqj’, 
1 * 

I-I*dI+~ 
c 

baphahp 

a=m+l I=1 a, P-44 

where II* is the Routh potential, Taking into account the relations (3.4) and (3.6), we 
write (3.5) in the form d ar;* aL* 

dt99,‘-q-=O7 i = 1,2, . . . , m 

The latter represent the equations of motion of the reduced system containing the gene- 
ralized Lagrangian function [7]. 
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