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a uniform pressure p,* acts on the external contour and & = 1/s , these coefficients are

K1+ iK1 = V nc po* [Gy (85, €) + iGy (B0, )]
The values of G, (8,, €) and G, (8,, &) are presented in Table 1.
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The equations of motion of mechanical systems with multipliers are reduced
to the form enabling the separation of these equations into two groups, the first
group describing the motions of the system, and the second group defining the
multipliers, Each multiplier is determined independently of the remaining
multipliers, and this makes it easy to assess the dynamic effect of each con-
straint on the system, On the basis of this approach, we study the following
problems; determination of the constraint reactions [1], study of the motion
of controlled systems with prescribed constraints [2, 3] and utilization of the
method of nonholonomic mechanical systems in the case when the first integ-
rals exist [4].

1, Equations of motion of a system with multipliers, We consider
a system the position of which is defined in terms of the generalized coordinates g; {i =
1, 2, ..., n). We assume that the system is restricted by ideal, nonholonomic, second
order nonlinear constraints of the form

fa (b, 995 ¢,)=0, i=1,2,...,n «=42,..,4 (LD
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where . .
D(fls fgy'-w f,)/D(qu,...,qn )#0, p=n—s (1.2)
Equations of motion of the system can be written in the form [5]
as $ 3,
— =0, A —, i=1,2,...,n .
aqi Qz + agl Q aqi 1 (1 3)

where A, are the undetermined multipliers characterizing the dynamic effect of the con-
straints on the mechanical system, Since Eqs, (1. 3) appear unsuitable, as they are, for
the direct determination of the multipliers A, we transform them by introducing new
variables ¢;, 2™, ..., gp”, Wy Uy ..y Uy toreplace g7, g7y ..., gy . Here u =
fq_ (t1 gis qi.1 qi")'
Taking into account the condition (1, 2), we have

Qh" = qh" (tv q_i qi.7 qv"’ "’a,'.)v k =P+ 11 ceny I V=

=1,2,..,p a=1,2,...,5s
Thus we can express the new variables in terms of the old ones, and vice versa, We note
that the equations of constraints (1. 1) now become

u =0, a=1,2,...,s

Using the new variables we can write the equations of motion of the system in the fol-

lowing form [5]: n 907
..:Qv+ 2 Qh qh.. ’ ‘V=1,2..--, p=n—s (1'4)
ag, h=p+1 9,

( il ) = 3 q (a‘-’h:) hy =125 (1.5)

duy” h=p+1 du,
§=8(t, qi q.i.v 9,7 ua..)’ D° =

The first group of Eqs. (1,4) describes the motion of the system, and the second group
(1. 5) makes it possible to determine the multipliers independently from each other,
Notes, 1°, The above equations can obviously be applied to the systems with the
usual first order nonholonomic constraints,
2°, Since for the holonomic systems the constraint equations have the form

Folt,¢)=0, i=4,2,...,0 a=12..,5s

we introduce the following variables: gy, ga,..., gp,ty, Uz ...y #s With u, = F (¢, q1).
Then Egs. (1.4) and (1. 5) will assume the form
ar° AT . o .o dgy
_:T—T_ = v+ 2 Qh I 1 v=1,2,..., p=n—s (1.6)
9,  dq, h=p+1 9,
T\ for\ & _.[ag\
_éi(_"___) _< ): > Q, (aqh)—;-xa, a=1,2,...,s (L7
te du, ou, h=pt1 ou,

T=T(t' 9y qv' Ugy ua.)’ ®°=®Is“ua'.‘=2u¢2=—0
L-J ]

Example 1. Let us consider the motion of a motorcar in accordance with a sim-~
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plified scheme (see [6])., Following [6], we write the expression for the energy of acce-
leration in the form . R
28 =M (2, +y,; Y+ T 97+ ...

where the terms which have not been written out containno = ., y,”or ¢*, The gene~
ralized forces referred to the generalized coordinates z,, y,and ¢ are Q@ = F cos @,
@2 = F sin ¢ and Qg = 0 [6].

Let us now introduce the variables ¢, u, and u,

u, =z, sin @ —y, cos @+ bg, u, =z, 9in (P +6) —y, cos(p+6) ~acosB

(u;" = 0 and u," = 0 represent the equations of nonholonomic constraints [6]). Differ-
entiating the above relations with respect to time and solving the resulting equations
for z,° and y.”, we have

o 1 .

2, = g5 [Acos(@+6)+ Beosgl, y. = (L.8)
! . . .

smﬁ [BSin(P"l—Asin(Q +e)]v A=b(v _ul +lotgeq)'

- - lcos*Q + bsin@ H -
B——-u’ +-acosf@ ~— Si-:;ﬁ (p’——s-in—e' 90, l=a<bd

Using Eq, (1. 4), we now obtain the equation of motion of the system

“ M "
I + 55 {2, [boos (9 +8) + acos @ cos ] + (L.9)
Y, [acosBsing -+ bsin (@ + 0)]} =0
To find the dynamic effects of the constraints we use (1. 5) to obtain
M .- -
e [%e ©08(P+0) +y. sin(@+0)] =Fetgd—2, (1.10)

M /sin@(z, cos @4y, sing) =F 4,
In (1. 10) we must replace z.” and ¥, by the corresponding expressions given in (1. 8).
After simple transformations we obtain the expressions for ¢, Ay and Ay which agree
with those obtained in [6]. '

2. On the motion of controlled mechanical systems with pre-
scribed constraints, Let us allow real, ideal constraints (2, 1) and prescribed con-
straints [2, 3] (2. 2) be imposed on a controlled mechanical system

Talth 96 02 0 &) =0, 1=1,2..,5 a=1,2,..,8 j=142..,k (2.1
€l 0 9y, 95 - E) =0, B=1,2,...,7 (2.2)
where §; are the control parameters of the system, Let us also assume, that
D * ?""f! * 1"‘9'g)
Up for o fy B8y - 6 +0, p=n—(s+71)
D (qp+1’ qP+21 LA} qn )
The prescribed constraints can be regarded as constraints the reactions of which are equal
to zero,
Let us determine the reactions of the prescribed constraints and equate them to zero.

We introduce the variables ¢,", g™, - . o, p™ 8™ gy o ooy Uy BT Vg oy Up
and
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ua" = fu (¢, 93 qi.y qi.., 2])1 7)“3 =8p (¢, ' 9{1 q.i“r ‘i])v
a=1,2,...,5 B=1,2,...,r

Using Egs, (1. 1), we obtain the dynamic conditions

(avp > Z Qh<aqh ) , B=1,2,...,r (2.3)

The equations of motion of the reduced system now assume the form
n

a8° aq,.
rr =Q+ 2 Qh s v=14,2,...,p (2.4
Y h=p+1

and equations determining the reactions of the real constraints, become

(az;g >o Z Qh(aqh ) +hy, oa=41,2,. (2.5)

h=p+1

Thus the motion of a controlled system with prescribed constraints is completely des-
cribed by Eqgs. (2. 3) and (2.4). Equations (2, 4) represent the equations of motion of the
system in question under the assumption that the prescribed constraints are regarded as
real constraints, while Eqgs, (2. 3) describe the conditions which enable us to reduce the
prescribed constraints to the real ones. Equations (2. 5) give the reactions of the real
constraints, Thus if the reduced system has p degrees of freedom, then the number of
equations describing the motions of the system is p + r (where 7 is the number ofequa-
tions of prescribed constraints), Equations (2, 1), (2.3) and (2. 4) together form a com-
plete system of equations of the problem of motion of a controlled mechanical system
with prescribed constraints,

Note. If we impose on holonomic mechanical systems the prescribed holonomic
constraints (2, 6) and real holonomic constraints (2, 7)

8t 9;,E)=0, i=1,2,...,n B=42,...,55 j=42,...,k (2. 6)

fa(t’ qi,&j)zo, a:1,2,...,8 (2.7)
replace the variables ¢;, ¢s, - - ., gn by the variables ¢;, g2y - - «y 9p, Ugy Up, - .o, 4y,
[ZT) Vﬁ" “ ey l)rand

Uy = fa, ¢y 95, Ej} v p=28p (¢, 9, E])
then the dynamic conditions will assume the form
n ©
(o) - () - X o ()
a4 \ 9 )] T\ = h \"a B=1,2....r
d B B h=p+1 vﬁ ’
and the equations of motion of the system will become
™

d_aT° AT’ o 99;°
e il e =Q,” + Z Qy e, v=1,2,...,p

h=p+1

while the equations describing the reactions of the real constraints will have the form
d aT° \° aT° \° 89, \°
() () = Y e () et

Example 2. The Appell problem [2, 3], A material plane P can slide translation-
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ally on a stationary horizontal plane Ozy. A sphere of radius R can roll without sliding
on the plane P , The motion on the plane P is regulated automatically in such a way,
that the center of the sphere rotates uniformly about the Oz-axis with angular velocity .

Let us write the equations of the problem, We denote by § and n the coordinates of
the center of the sphere,by p, ¢ and r the components of the instantaneous angular ve-~
locity of the sphere, and by u, » the coordinates of some point on the plane, Then the
energy of acceleration of the sphere is

2=ME+1) + s MR (p* 4+ ¢ + 1Y)

The equations of the real constraints are §' — gR — " =0, %' 4 pR — v" == 0, andthe
equations of the prescribed constraints are §* | on = 0, 4° — o = 0. Introducing the
variables r, uy, us, ¥ and vy in which

u;:ﬁ.,-— qR—u, u"=1|' -I-pR—v’_, 1,1' = E+‘m]1 ”"aﬂ'_ ©f
we find
E¥ =" — ovs’ — ¥, 0 =0+ on’ —oh
1 o9 . (1]
o G, § = 0 )

and the energy of acceleration assumes the form
28 = M[(n" — ovr’ — @R+ (00" + o’ — o] + . .
s M [(n — w1 — ovs’ — 0% — u)E 4 (e — o3 —om’ - ot v7) - R
The generalized forces expressed in terms of the generalized coordinates, are equal to
zero, In accordance with Egs, (2. 3), the dynamic conditions are

7% 4-2u° =0, 3o —2"=0
and (2, 4) yields the equations of motion =" == 0 of the reduced system,
To find the reactions of the real constraints we use (2, 5) and obtain *s MRq" =
bt Xl, 2/5 MRP. = A’l'
It can easily be shown that the dynamic conditions can be written in the form

—50* +-2Rq =0, 2Rp" — 5w =20
Thus the system (2, 6) is of the same order as the system (2, 7) [3].

8, We consider the case when the integrals of dynamic equations represent the con-
ditions of the nonholonomic constraints [3].

We assume that certain first integrals of motion of the system are known. The ques-
tion arises whether these integrals can be regarded as the equations of nonholonomic con-~
straints imposed on the system in question, and how to use them in constructing the equa-
tions, Applying the results obtained in Sect, 2 we obtain the answer very simply, since
the first integrals are particular cases of the prescribed constraints, In other words, the
first integrals can be regarded as the equations of nonholonomic constraints,

Let the motion of the system be subject to the nonholonomic constraint (1. 1) and have
the first integrals

8p (t, 9;, 9;) = Cg = const, B=1,2,...,r 3.1
The equations of motion of the system with constraints (1, 1) will be
8
s _ . . 2 0fy
s~ At A=) g (3.2

a==1
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where Q;* denote the generalized forces of reaction of the constraints, Obviously, Eqs,
(3. 2) also have first integrals (3, 1), Let us now regard them as the new constraints and
find the corresponding Lagrange multipliers, As before, we introduce the variables
n n
. g, . dgy . g
v = P/ e, —
B Zaqg DY ag, 4T T
i=1 f==1
Utilizing (1. 5) and noting that "
as as_ oq”
dvg v 9vg”
Y

we find the multipliers pgcorresponding to the "new" constraints

n as ° av . Y
b= (75— %—o) (5)
i=1

But along the trajectory of motion we have (3, 2), therefore

we=0, p=1,2...,r
Example 3, We consider the case of a holonomic scleronomous system with igno-
rable coordinates g, (@ = m +-1, ..., n). The kinetic energy of such a system has the
form . n
T= 2 Z G (91, 08, -0 0) 0,0,
r, =1

In this case the cyclic integrals exist

p,=0T]8q," =h,=const, a=m+41,...,n (3.9)
We can now regard the cyclic integrals as the equations of the nonholonomic constraints,
Let us introduce the variables @1s @' « - -+ Im’ Vm+1’s Umyss - - - Un'» Where vy =
pﬁ_h‘;v ﬁ=M+1, ey R

First, we shall show that the dynamic conditions are satisfied identically, In the pre-
sent case these conditions have the form

R
F) = 2 @ \m
B a==m-}-1 °8

It can easily be proved that
as \* _ \O d [_8T \" (9" \
() - 5, 4 G () =
a =m-+1
Moreover, we have Q, = 0 since g, are ignorable coordinates, Therefore the dynamic

conditions are satisfied identically and the system is reducible. In accordance with [7],
the constraint equations (3, 3) yield

m n n
4y = Z Baiqi. + By, By = Z bthﬂv By =— Z baﬂaﬁi (3.4)
i=1 B=m--1 B=m+1

a, p=m+1,..,n i=1,...,m

To construct the equations of motion of the reduced system, we shall use the Voronets
equation [6] for the cyclic systems
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d ar* AT Z Z aj B.
— — — aqi — hu ( —_ d: ay) - (30 5)

dt d¢y 99, ol 99

= B,
X "

aq,

a=m+1
Here [1]
n m
1 bop hoh ! g0,
*"=T"+3 Z ap *altp, T*= 3 &t 9 (8.6)
e, f=mi1 i,1=1

T* is the kinetic energy of the reduced system, while the coefficients a;* and b, can
be found as shown in [7].
Let us now set L* = T'* — V, where V is the generalized potential defined by the
equation [7] n om 4 i
V=II* + % Z ZBajhaqj', T*=1 + —2' 2 bthahB
a=m+1 j=1 «, B=m+1
where II* is the Routh potential, Taking into account the relations (3, 4) and (3, 6), we
write (3. 5) in the form d aL* aL* )
@ ag; g, =0 i=hom

The latter represent the equations of motion of the reduced system containing the gene-
ralized Lagrangian function [7].

REFERENCES

1, Lur'e, A, 1., Analytical Mechanics, Moscow, Fizmatgiz, 1961,

2. Appell, P., Theoretical Mechanics, (Transl. from French), Vol. 2, Moscow,
Fizmatgiz, 1960,

3, Kirgetov, V,I,, The motion of controlled mechanical systems with prescribed
constraints (servoconstraints), PMM Vol, 31, N2 3, 19617,

4. Dobronravov, V, V,, On the integrals of dynamic equations as conditions of
nonholonomic constraints. In coll, : Problems of Analytical and Applied Me-
chanics., Moscow, Oborongiz, 1963,

5, Do Shan’', Equations of motion of systems with second-order nonlinear nonholo-
nomic constraints, PMM Vol. 37, N2 2, 1973,

6, Dobronravov, V, V,, Fundamentals of the Mechanics of Nonholonomic Sys-
tems. Moscow, "Vysshaia shkola", 1970.

7, Gantmakher, F,, Lectures on Analytical Mechanics. (English translation),
Chelsea, New York, 1974.

Translated by L, K,



